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Summary
Alternative splicing is  an important mechanism to regulate gene expression.  At least  30% of al l
human genes are alternatively spliced. This process can be regulated by extracellular signals that
include stress and cellular activity. Splice site selection is regulated by a multiprotein complex Its
composition can be regulated by either releasing proteins from nuclear storage sites or by changing
protein:protein, as well as protein:RNA Interactions by serine and tyrosine phosphorylation.

I. Introduction
The expression of genetic information is controlled at

several stages, such as DNA structure, transcription, pre-
mRNA processing, translation and protein stability. To
date, the most studied control mechanism is transcription.
However, recent studies emphasized the importance of
RNA metabolism in regulation of gene expression: RNA
plays a crucial role in epigenetic regulation (Woiffe and
Matzke, 1999), RNA editing is important for proper brain
function (Sprengel et al, 1999), information stored in
RNA can flow back into the genome (Cousineau et al,
2000) and almost all human genes are spliced by at least
two splicing systems, and about 30% of them are
alternatively spliced (Hanke et al, 1999; Mironov et al,
1999). The regulation of splicing was probably crucial for
the evolution of eukaryotes (Herbert and Rich, 1999).
Splice site recognition is helped by auxiliary proteins
(trans factors) binding to short degenerate sequences on the
RNA (exonic sequence elements). The fine tuned
concentration of these trans factors governs splice site
selection, both in vivo and in vitro (Black, 1995; Manley
and Tacke, 1996; Grabowski, 1998). Proper splicing
regulation is important for an organism, as it has been
estimated that up to 15% of genetic defects caused by point
mutations in humans manifest themselves as pre- mRNA
splicing defects caused by changing splice site sequences
(Krawczak et al, 1992; Nakai and Sakamoto, 1994). In
addition, it became apparent that point mutations in exons

can cause missplicing by changing exonic sequence
elements (Cooper and Mattox, 1997), for example in
tauopathies (Gao et al, 2000) or spinal muscular atrophy
(Lorson et al, 1999). A recent survey of disease-associated
genes suggested that as much as a third of them might be
alternatively spliced, suggesting that more pathologies
might be associated with splicing defects (Hanke et al,
1999).

Alternative splicing pathways are not static, because
an organism can dynamically change its splicing patterns,
e.g. during development and/or in response to extracellular
stimuli such as insulin (Smith et al, 1999), nerve growth
factor (Varani and Nagai, 1998), cytokines (Reddy, 1989;
Eissa et al, 1996), and neuronal activity (Vezzani et al,
1995; Daoud et al, 1999). Some changes of splicing
patterns require protein synthesis and may be based on the
differential transcriptional control of splicing factor
expression (Shifrin and Neel, 1993). One prominent
example for a protein dependent change in splice site
selection are the changes in the development of cancer.
Here, the processing of CD44 changes during the
transition of preneoplasias to neoplasias and their
metastases which is associated with de novo synthesis of
several SR proteins (Stickeler et al 1999) In addition, there
is growing evidence that alternative splicing may also be
regulated by transient covalent modifications of proteins
implicated in mRNA splicing. For example, inclusion of
CD44 exon v5 is independent of de novo protein synthesis   
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Figure lA.  The effect of pilocarpine on alternatively spliced
genes. Experimental paradigm. Rats are injected
intraperitoneally with pilocarpine, a cholinergic muscarinic
agonist that can cross the blood brain barrier. As a result the
drug causes strong neuronal activity in neurons of the
hippocampus resulting in seizures that resemble an epileptic
episode. The diagram shows a coronal cross section of the
brain.

Figure 1  B-C.  The effect of
pilocarpine on alternatively
spliced genes. RT-PCR analysis
of hippocampal RNA
frompilocarpine treated rats.
Pilocarpineincreases neuronal
activity in the brain thatstarts in
the hippocampal
formation.Removal of tissue after
pilocarpine injection was at the
time indicated. C: untreated
control. A statistical evaluation
for three experiments is given on
the right. Standard deviations are
indicated. Location of primers and
eDNA structure are (B ) RT PCR for
fos B and its statistical
schematically indicated for each
gene.evaluation (C) RT PCR for
clk2 and its statistical evaluation

and is coupled to a kinase downstream of Ras (König et al,
1998). Specific examples of changes in pre-mRNA
processing after external stimuli have been compiled in
this issue (Stoss et al, 2000). Here, we summarize changes
of alternative splicing in response to stress and discuss the
possible regulatory mechanisms.

II. Change of splice site selection
evoked by cellular activity

The influence of cellular stimulation on alternative
splice site selection has been mostly studied in the brain,
because acute stress that is reflected in neuronal activity
promotes neuroanatomic changes and increases the risk for
neurodegeneration (MeEwen, 1999). In several model
systems a change in alternative splice site selection after
cellular stress has been observed. The gene of
acetyleholinesterase generates two isoforms by alternative
usage of an intron located at the end of the open reading
frame (Kaufer et al, 1998). In normal brains, this "read-
through" (AchE-R) variant is hardly detectable. However,
when mice are subjected to acute stress by being forced to
swim, this read through variant is upregulated. In contrast

to the dominant "synaptic" variant (AchE-S), the AchE-R
variant is soluble and monomeric. Physiologically, this
switch is seen as a means to prevent neurodegenration,
caused by excess activity of AchE-S (Sternfeld et al,
2000). Similar effects have been seen with potassium
channels, where the effect is most likely hormone mediated
(Xie and McCobb, 1998)

Another system studied is a change in neuronal
activity evoked by pilocarpine (Daoud et al, 1999).
Pilocaipine is a cholinergic muscarinic agonist that crosses
the blood-brain barrier. This system has been used as
model for human temporal lobe epilepsy (Turski, 1983,
1984). After neurons were stimulated with this drug, the
pre-mRNA processing of the splicing factor transformer2-β
(tra2-β) is changed (Daoud et al, 1999). The tra2-β gene
generates at least five isoforms that can encode three open
reading frames (Nayler et al, 1998a) from which two,
htra2-βl and β2, are translated into protein (Daoud et al,
1999). Neuronal stimulation causes a shift from the β1 to
the β3 isoform. Since both transformer proteins have
different abilities to regulate splice site selection when
tested in cotransfection experiments (Stamm et al, 1999),
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Figure  2  A-D.  The effect of whisker removal
on alternative splice site selection in the rat
barrel cortex. The experimental system. (A)
shows the rat's face and its whisker pad. Some
whiskers are already removed. (B ) is a diagram of
the whisker pad. (C) is a drawing of a rat brain, in
which the somatosensory representation of the
rat's body surface is indicated. The representation
of the whisker pad is indicated. (D) is a
cytochrome oxidase staining of the region in the
somatosensory cdrtex S1. Each of the barrel
shaped structures represents a single whisker.
Removal of a whisker decreases the neuronal
activity in this region ("barrel").

Figure 2E-I .  Effect of whisker removal on allernadve splicing
patterns in the barrel cortex.
RNA was isolated after the whiskers were repeate4ly removed (deprived)
for the time body indicated (4, 7, 14 days). As a control, the colateral
side was used. Whiskers corresponding to this side were not removed. A
statistical evaluation for three experiments is given on the right.
Standard deviations are indicated. Location of primers and eDNA
structure are schematically indicated for each gene. The altematively
splice genes were: (E) Clathrin light chain B, exon EN (Stamm et al,
1992), (F) GABA A receptor, gamma2 subunit, alternative exon (Wang
and Grabowski, 1996), (G) NMDA receptori, exon 21, (Hollmann et al,
1993; Zimmer et al, 1995), (H) NMDA receptori, exon 5, (Hollmann et
al, 1993; Zimmer et al, 1995), (I) Doparnin D3 receptor, (Giros et al,
1991)

it is likely that this switch changes the alternative splicing
patterns of several still unknown target genes. In
agreement with this hypothesis, the splicing patterns of
clathrin light chain B, exon EN, NMDA receptor1, exon
22 and the neuron specific exon of c-src are changed after
pilocarpine treatment (Daoud et al, 1999). In addition, the
splicing patterns of the fosB gene and the SR protein
kinase clk2 change after pilocarpine induced neuronal
activity as well (Figure 1) .  A change of the splicing
pattern of the NMDA receptorl has also been observed in a
kindling model, in which neuronal activity is evoked by
repeated electrical stimulation (Vezzani et al, 1995).
Finally, induction of long term potentiation was shown to

regulate syntaxin 3 isofomrs (Rodger et al, 1998).
Together, these data indicate that after a strong burst

of neuronal activity, different isoforms of splicing
regulatory proteins are generated, which changes the
processing of a number of genes. In both of these systems
a change in splice site selection was observed after an
increase of neuronal activity. We used the rat barrel cortex
as a third model, in which neuronal activity is decreased. In
rodents, the facial whiskers indirectly project to a region in
the primary somatosensory cortex Sl (Figure 2A)
(Woolsey and Van der Loos, 1970, 1973). Each whisker is
represented by an arrangement of cortical neurons that
resembles a barrel. Stimulation of a whisker increases the
activity of the neurons corresponding to this whisker,
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which can be detected histologically by cytochrome
oxidase staining (Worig-Riley and Welt, 1980). When
whiskers are completely removed on one side of the
animal's snout, alternative splice site selection in several
genes of the corresponding barrel cortex are changed
(Figure 2B, C). This indicates that a change in cellular
activity, not just an increase, results in differences of pre-
mRNA processing.

Cellular activity is not the only stress condition that
alters splice site selection, as a change of alternative
splicing patterns is also seen in response to temperature
shock. Alternative splicing of the human
neurofibromatosis type 1(NFI) gene (Ars et al, 2000) and
the potato invertase gene (Bournay et al, 1996) are induced
by cold shock, whereas a rise in temperature changes the
splicing pattern of heat shock protein 47 (Takechi et al
1994) and the collagen Al gene of a Danlos syndrome
patient (Weil et al, 1989). Finally, osmotic stress changes
the pre mRNA processing of an adenovirus reporter gene
(van Oordt et al, 2000). Together, these results show that a
change in pre-mRNA splicing patterns is a common
cellular adaptation to stress and cellular activity. This
raises the question how the signal is transduced to the
spliceosome.

III. Mechanisms of alternative splice
site
Although there has been tremendous progress in
elucidating the mechanisms regulating constitutive
splicing, the rules governing alternative splice site
selection still remain elusive. Since the general
mechanism has been reviewed in this volume (Stoss et al,
2000), we concentrate on the question bow the recognition
of an alternative exon can be modulated. All the elements
on the RNA that govern splice site selection are only
weakly conserved (Breitbart et al, 1987; Berget, 1995;
Stamm et al, 2000). The high by fidelity observed in
splicing is therefore achieved by the formation of a
protein-RNA complex, that involved cooperative binding
of several molecules (Figure 3 ). On the pre-mRNA,
sequences known as exonic enhancers or silencers have
been identified and were shown to bind to splicing
regulatory proteins, such as SR proteins and hnRNPs
(reviewed in: (Manley and Tacke, 1996; Cooper and
Mattox, 1997; Hertel et al, 1997; Stamm et al, 2000;
Stoss et al, 2000). SR proteins multimenze and can bind
to components of the spliceosome, e.g. to the Ul snRNP
particle (Wu and Maniatis, 1993). The 5' end of the Ul
snRNA present in this particle hybridizes to the 5' site,
which initiates the recognition of an exon (Zhuang and
Weiner, 1986). As a result the initial recognition of an
exon is regulated by protein:protein interaction (e.g.
between different SR proteins), by protein:RNA
interactions (e.g. between an SR protein and a splicing
enhancer) and RNA:RNA interactions (e.g. between Ut
snRNA and the 5' splice site) (Figure 3A) .  In vitro
models suggest that the formation of this multi-
protein:RNA complex involves cooperative binding of the
individual components (Hertel and Maniatis, 1998) As a
result, splice site recognition is dependent on the relative

concentration of regulatory proteins and can be influenced
change in concentration of a constitutively expressed factor
can alter the composition of the protein complex forming
around an enhancer, which can either decrease (Figure
3C) or increase exon usage (Mayeda and Kramer, 1992;
Cáceres et al, 1994; Wang and Manley, 1995; Coulter et
al, 1997; Hanamura et al, 1998; Caputi et al, 1999) (iii)
factors necessary for recognition can be sequestered by
binding to a different protein (Figure 3D)  (Nayler et al,
1998c; Hartmann et al, 1999) (iv) the interaction of

Figure 3 .  Model  for al ternat ive  s p l i c e  s i t e
regulat ion (A) An exon (box) is recognized by binding of
multiple proteins (A,  B ) on splicing enhancers located on the
pre-mRNA (t, 2). Splicing of this exon is initiated by contact
with components of the constitutive splicing machinery,
shown here as the Ul snRNP (Ul). The formation of this
complex is cooperative and involves protein:protein
interactions, RNA:protein interaction and RNA: RNA
interactions that are indicated by different colors. This
complex can be regulated by several ways: (B ) A protein C
with higher affinity to the enhancer sequences can repress the
exon usage by competing with proteins A and B for binding to
the exon. (C) The recognition is concentration dependent, as
an increase of the concentration of protein A could compete
for binding with protein B. (D) Likewise protein B could be
sequestered by a different protein D (E) Phosphorylation can
influence the binding of individual factors assembling around
exon enhancers (F) Tissue specific factors can recognize a
protein in a cell type or tissue specific way.
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Figure 4 .  Subnuclear
compartments v i sual ized
with endogenous
ant ibodies  o f  as  GFP-
fus ion  prote ins  (a tax in-1)
Subnuclear compartments include
SC35-speckles (Fu and Maniatis,
1992) YTbodies containing
YT521-B (Nayler et al, 2000)
coiled bodies (Carmo-Fonseca et
al, 1992) containing coilin, PML
bodies (Grande et al, 1996)
nuclear inclusion, such as the
ones formed by ataxin-l (Skinner
et al, 1997) and gems (Liu and
Dreyfuss, 1996) formed by SMN
(survival of motoneuron).

Figure 5 .  Stress evoked by
osmotic shock changes the
intracellular localization of the
splicing regulatory proteins
htra2-βl. Cells were subject to 3
hours of hyperosmotic medium
and then stained for htra2-βl
(left). When compared to untreated
cells, a translocation of splicing
regulatory proteins is apparent.

proteins can be regulated by phosphorylation (Figure
3E) (Fu, 1995; Colwill et al, 1996; Duncan et al, 1997;
Prasad et al, 1999) (v) tissue specific factors can recognize
exons in a cell type specific way (Figure 3F) (Jensen et
al, 2000; Polydorides et al, 2000).

A number of studies have revealed that transcription
and splice site selection (Cramer et al, 1999) are occurring
concomitantly in a large complex that was termed 'RNA
factory' (McCracken et al, 1997) or transcriptosomal
complex (Corden and Patturajan, 1997), which is probably
associated with components the nuclear matrix (Nayler et
al, 1998c; Bode et al, 2000). Various components of this
complex are stored in subnuclear compartments (Figure
4 ) and can be released into the nucleoplasma by regulatory
mechanisms, such a phosphorylation. One of the best
studied example of this domains are nuclear speckles in
which splicing factors are stored until they are released e.g.
by phosphorylation (Spector, 1993; ltuang and Spector,
1996; Misteli et al, 1997, 1998). Nuclear factories and

storage compartments are dynamically linked to RNA
polymerase activity. Speckles change their morphology
under the influence of transcriptional inhibitors (Carmo-
Fonseca et al, 1992; Misteli et al, 1998; Nayler et al,
1998b; Misteli and Spector, 1999). This suggests the
existence of a dynamically regulated nuclear architecture
The importance of proper regulation is apparent under
supporting the compartmentalization of the nucleus
(Nakayasu and Berezney, 1989; Jackson et al, 1993; Ma et
al, 1998) cellular stress conditions. Activation of the
MKK(3/6)-p38 pathway changes the subcelluar
localization of several factors involved in pre-mRNA
processing and ultimately results in a change in splice site
selection (van Oordt et al, 2000). Similar results are
observed when primary neuronal cultures are subjected to
stress evoked by osmotic shock. In this system, the
splicing factor htra2-βl (Beil et al, 1997) is translocated
into the neurites and the alternative splicing patterns of
several genes change (Figure 5 ).
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Figure 6 .  Signal transduction and splicing. A model An overview of possible signal transduction pathways and their links to the
spliceosome is shown. Extracellular stimuli and factors are indicated on the top and are boxed. Some of the receptors are shown
below. Their phosphorylation (YP) leads to activation of src tyrosine kinases, which likely stimulate nuclear tyrosine kinases
(nPTK), such as abi, Rak, Fes, Fer, Weel and SiklBrk (Pendergast, 1996). These proteins phosphorylate nuclear proteins, which
affects splice site selection by changing the composition of splice site enhancer complexes. Similar, a change in serine
phosphorylation can change the composition of splice site enhancer complexes. Several nuclear kinases and phosphatases have
been identified, but the upstream kinases and signals renainn to be determined (Stojdl and Bell, 1999). Nitric oxide (NO) and
natriuretic peptides activate guanylyl cyclase either in the plasma membrane (GC-P) or in the cytosol (GC-S), which leads to the
activation of phospho-kinase G-I (PKG-I) mat phosphorylates splicing factor 1 (SF 1) (Wang et al, 1999) PTKR: phosoph-
tyrosine receptor; MIRR: multichain immune recognition receptor; FAK: focal adhesion kinase; OPCR: G-protein coupled
receptor; GC-P: OTP cyclase, plasma membrane bound; GC-S GTP cyclase, soluble; PKG-l: Phospho kinase G-l; 505: son of
sevenless; clk:cdc2 like kinase; SRPK: SR protein kinase; PP: protein phosphatase; SAF-B: scaffold attachment factor B; rSLM-2:
rat 5AM68 like molecule; poIII: RNA polymerase II; SR: protein: serine-arginine-rich protein; Ul, U2: Ul, U2: U1-U4 snRNP;
U2AF: U2 auxiliary factor

IV. How are signals transduced to the
spliceosome?

Despite the accumulating evidence that cellular
activity influences splice site selection, the molecular
mechanism that underline this phenomenon remain to he
determined. It is clear however, that phosphorylation plays
a fundamental role in regulation. The majority of proteins
regulating alternative splicing are phosphorylated and it
was shown that pre-mRNA processing is influenced by the
tyrosine kinase activity of src (Neel et al, 1995; Gondran
and Dautry, 1999). Since src is anchored to the cell
membrane, the question how the phosphorylation signal
reaches the nucleus needs to be addressed. Only a limited
number of tyrosine kinases have been identified in the
nucleus, among them AbI, Rak, Fes, Fer, Weel and
SiklBrk (reviewed in (Wang, 1994; Pendergast, 1996).

Most of these kinases shuttle between nucleus and cytosol
and it is possible that they phosphorylate proteins
participating in pre-mRNA processing. For example,
Sik/BRK was shown to phosphorylate Sam68, a process
which regulates the RNA binding activity of Sam68
(Derry et al, 2000) and most likely the composition of the
protein complex forming around Sam68 (Figure 3E)
(Chen et al, 1997; Hartmann et al, 1999). The
composition of this complex will most likely influence
splice site seleclion by controlling the recognition of exon
enhancers (Figure 3).

Furthermore, serine phosphotylation of SF1 (Berglund
et al, 1998; Rain et al, 1998), a factor that recognizes the
branch point and is therefore important for the formation
of the spliceosomal A complex, was shown to be regulated
by PKG-I (Wang et al, 1999). This kinase is activated by
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cGMP. The cGMP level itself can be regulated by a
membrane bound guanyl cyclase receptor that is activated
by natriuretic peptides or by a cytoplasmic guanyl cyclase
which is activated by nitric oxide (NO). Phosphorylation
of SF1 on Ser2O inhibits the SF1 -U2AF65 interaction,
leading to a block of pre-spliceosome assembly. One of
the best studied class of splicing regulatory proteins are
SR proteins hat are regulated by serine phosphorylation.
Several SR ) protein kinases have been identified (reviewed
by Stoss et al, 2000, this volume) and the identification of
their ipstream regulatory kinases will help to identify the
signal -transduction pathways regulating pre-mRNA
processing.

V. Conclusions
The regulation of transcription by signal transduction

pathways is well documented. Since at least 30% of all
human genes are subject to alternative splicing, regulation
of splice site selection after an extracellular signal seems
to be another important mechanism to regulate gene
expression. Although it is clear that phosphorylation
events are involved in mediating this signal, the
identification of the molecular players remains the
challenge of the future.
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